Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Rev Med Virol ; 31(5): 1-11, 2021 09.
Artigo em Inglês | MEDLINE | ID: covidwho-1574954

RESUMO

The clinical severity, rapid transmission and human losses due to coronavirus disease 2019 (Covid-19) have led the World Health Organization to declare it a pandemic. Traditional epidemiological tools are being significantly complemented by recent innovations especially using artificial intelligence (AI) and machine learning. AI-based model systems could improve pattern recognition of disease spread in populations and predictions of outbreaks in different geographical locations. A variable and a minimal amount of data are available for the signs and symptoms of Covid-19, allowing a composite of maximum likelihood algorithms to be employed to enhance the accuracy of disease diagnosis and to identify potential drugs. AI-based forecasting and predictions are expected to complement traditional approaches by helping public health officials to select better response and preparedness measures against Covid-19 cases. AI-based approaches have helped address the key issues but a significant impact on the global healthcare industry is yet to be achieved. The capability of AI to address the challenges may make it a key player in the operation of healthcare systems in future. Here, we present an overview of the prospective applications of the AI model systems in healthcare settings during the ongoing Covid-19 pandemic.


Assuntos
Inteligência Artificial , COVID-19/epidemiologia , Atenção à Saúde , Humanos , Pandemias
2.
J Med Virol ; 93(9): 5295-5309, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: covidwho-1363691

RESUMO

The human immune system is not adequately equipped to eliminate new microbes and could result in serious damage on first exposure. This is primarily attributed to the exaggerated immune response (inflammatory disease), which may prove detrimental to the host, as evidenced by SARS-CoV-2 infection. From the experiences of Novel Coronavirus Disease-19 to date, male patients are likely to suffer from high-intensity inflammation and disease severity than the female population. Hormones are considered the significant pillars of sex differences responsible for the discrepancy in immune response exhibited by males and females. Females appear to be better equipped to counter invading respiratory viral pathogens, including the novel SARS-CoV-2, than males. It can be hypothesized that females are more shielded from disease severity, probably owing to the diverse action/influence of estrogen and other sex hormones on both cellular (thymus-derived T lymphocytes) and humoral immunity (antibodies).


Assuntos
Enzima de Conversão de Angiotensina 2/imunologia , COVID-19 , Estrogênios/imunologia , Fatores Sexuais , COVID-19/epidemiologia , COVID-19/imunologia , Feminino , Humanos , Imunidade Humoral , Masculino , Linfócitos T/citologia , Linfócitos T/imunologia
3.
Front Mol Biosci ; 8: 607886, 2021.
Artigo em Inglês | MEDLINE | ID: covidwho-1359204

RESUMO

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) led to coronavirus disease 2019 (COVID-19) pandemic affecting nearly 71.2 million humans in more than 191 countries, with more than 1.6 million mortalities as of 12 December, 2020. The spike glycoprotein (S-protein), anchored onto the virus envelope, is the trimer of S-protein comprised of S1 and S2 domains which interacts with host cell receptors and facilitates virus-cell membrane fusion. The S1 domain comprises of a receptor binding domain (RBD) possessing an N-terminal domain and two subdomains (SD1 and SD2). Certain regions of S-protein of SARS-CoV-2 such as S2 domain and fragment of the RBD remain conserved despite the high selection pressure. These conserved regions of the S-protein are extrapolated as the potential target for developing molecular diagnostic techniques. Further, the S-protein acts as an antigenic target for different serological assay platforms for the diagnosis of COVID-19. Virus-specific IgM and IgG antibodies can be used to detect viral proteins in ELISA and lateral flow immunoassays. The S-protein of SARS-CoV-2 has very high sequence similarity to SARS-CoV-1, and the monoclonal antibodies (mAbs) against SARS-CoV-1 cross-react with S-protein of SARS-CoV-2 and neutralize its activity. Furthermore, in vitro studies have demonstrated that polyclonal antibodies targeted against the RBD of S-protein of SARS-CoV-1 can neutralize SARS-CoV-2 thus inhibiting its infectivity in permissive cell lines. Research on coronaviral S-proteins paves the way for the development of vaccines that may prevent SARS-CoV-2 infection and alleviate the current global coronavirus pandemic. However, specific neutralizing mAbs against SARS-CoV-2 are in clinical development. Therefore, neutralizing antibodies targeting SARS-CoV-2 S-protein are promising specific antiviral therapeutics for pre-and post-exposure prophylaxis and treatment of SARS-CoV-2 infection. We hereby review the approaches taken by researchers across the world to use spike gene and S-glycoprotein for the development of effective diagnostics, vaccines and therapeutics against SARA-CoV-2 infection the COVID-19 pandemic.

4.
Environ Sci Pollut Res Int ; 28(26): 34211-34228, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1227894

RESUMO

Disinfectants and sanitizers are essential preventive agents against the coronavirus disease 2019 (COVID-19) pandemic; however, the pandemic crisis was marred by undue hype, which led to the indiscriminate use of disinfectants and sanitizers. Despite demonstrating a beneficial role in the control and prevention of COVID-19, there are crucial concerns regarding the large-scale use of disinfectants and sanitizers, including the side effects on human and animal health along with harmful impacts exerted on the environment and ecological balance. This article discusses the roles of disinfectants and sanitizers in the control and prevention of the current pandemic and highlights updated disinfection techniques against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This article provides evidence of the deleterious effects of disinfectants and sanitizers exerted on humans, animals, and the environment as well as suggests mitigation strategies to reduce these effects. Additionally, potential technologies and approaches for the reduction of these effects and the development of safe, affordable, and effective disinfectants are discussed, particularly, eco-friendly technologies using nanotechnology and nanomedicine.


Assuntos
COVID-19 , Desinfetantes , Animais , Desinfecção , Humanos , Pandemias/prevenção & controle , SARS-CoV-2
5.
J Infect Public Health ; 14(7): 863-875, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: covidwho-1202178

RESUMO

The ongoing coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global public health problem. The SARS-CoV-2 triggers hyper-activation of inflammatory and immune responses resulting in cytokine storm and increased inflammatory responses on several organs like lungs, kidneys, intestine, and placenta. Although SARS-CoV-2 affects individuals of all age groups and physiological statuses, immune-compromised individuals such as pregnant women are considered as a highly vulnerable group. This review aims to raise the concerns of high risk of infection, morbidity and mortality of COVID-19 in pregnant women and provides critical reviews of pathophysiology and pathobiology of how SARS-CoV-2 infection potentially increases the severity and fatality during pregnancy. This article also provides a discussion of current evidence on vertical transmission of SARS-CoV-2 during pregnancy and breastfeeding. Lastly, guidelines on management, treatment, preventive, and mitigation strategies of SARS-CoV-2 infection during pregnancy and pregnancy-related conditions such as delivery and breastfeeding are discussed.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Feminino , Humanos , Transmissão Vertical de Doenças Infecciosas , Pandemias , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Complicações Infecciosas na Gravidez/prevenção & controle , SARS-CoV-2
6.
Hum Vaccin Immunother ; 17(7): 1897-1909, 2021 07 03.
Artigo em Inglês | MEDLINE | ID: covidwho-1082109

RESUMO

The coronavirus disease (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has created havoc worldwide. Due to the non-availability of any vaccine or drugs against COVID-19, immunotherapies involving convalescent plasma, immunoglobulins, antibodies (monoclonal or polyclonal), and the use of immunomodulatory agents to enhance immunity are valuable alternative options. Cell-based therapies including natural killer cells, T cells, stem cells along with cytokines and toll-like receptors (TLRs) based therapies are also being exploited potentially against COVID-19. Future research need to strengthen the field of developing effective immunotherapeutics and immunomodulators with a thrust of providing appropriate, affordable, convenient, and cost-effective prophylactic and treatment regimens to combat global COVID-19 crisis that has led to a state of medical emergency enforcing entire countries of the world to devote their research infrastructure and manpower in tackling this pandemic.


Assuntos
COVID-19 , Infecções por Coronavirus , COVID-19/terapia , Humanos , Imunização Passiva , Imunoterapia , SARS-CoV-2 , Soroterapia para COVID-19
7.
Virusdisease ; 31(4): 432-440, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: covidwho-1023363

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic is caused by the severe acute respiratory syndrome coronavirus-2, a new member of the Coronavirus family. The virus was first identified in Wuhan, China, where the epidemic originated. The viral genome was sequenced and a real time reverse transcription polymerase chain reaction assay was developed and used for the detection of virus. Different countries took different approaches for the diagnosis of COVID-19. Some countries prioritized extensive testing for COVID-19 at a very early phase of the pandemic whereas other countries took a long time to build the testing capacity and to implement the testing extensively. The assay design formats were available in the public domain and thereby allowing researchers to replicate them to make diagnostic kits. Consequently, several antigen or antibody-based diagnostic tests were also developed for the diagnosis of COVID-19. However, there were some validation and regulatory challenges while bringing these assays into the market. During the course of the pandemic, it became clear that the countries which implemented testing at an early stage of the pandemic were capable of controlling the spread more effectively than those that implemented them at later stages. As several countries implemented a lockdown for controlling the spread of the virus, it is critical to build the testing capability to meet the extensive need of testing while exiting the lockdown. Testing and isolation of positive cases are the most effective ways of preventing the spread of virus and gradually returning life back to normality.

8.
J Environ Manage ; 280: 111825, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1023634

RESUMO

The SARS-CoV-2/COVID-19 pandemic has spread across the globe and affected millions of individuals as of the efficient virus transmission potential mediated via multiple virus shedding routes. The presence of SARS-CoV-2 in the stool samples and its prolonged shedding in environmental compartments like sewage and wastewater signifies a potential threat adding to the transmission cycle of this novel virus. The potential role played by the asymptomatic COVID-19 patients in transmitting the disease via the fecal-oral route is now under investigation. Hence, in the present scenario, wastewater-based epidemiology, and sewage surveillance may provide valuable insights into the prevalence of SARS-CoV-2 among the human population and could serve as a sensitive surveillance system and a crucial early warning tool. Further studies are required to determine the survival of SARS-CoV-2 in the environment, transmissibility through wastewater, and the potential to infect humans via the fecal-oral route. Appropriate frameworks with regards to evaluation and analysis of SARS-CoV-2 will help implement appropriate intervention strategies and necessary sanitation practices to ensure virus free clean water supply to have a check on the further spread of this pandemic virus.


Assuntos
COVID-19 , Pandemias , Humanos , Saúde Pública , SARS-CoV-2 , Esgotos , Águas Residuárias
9.
Hum Vaccin Immunother ; 16(12): 2938-2943, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-1010289

RESUMO

The rapid worldwide spread of the COVID-19 pandemic, caused by the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in tens of millions of infections and over one million deaths. SARS-CoV-2 infection affects all age groups; however, those over 60 years old are affected more severely. Moreover, pre-existing co-morbidities result in higher COVID-19-associated mortality in the geriatric population. This article highlights the associated risk factors of SARS-CoV-2 infection in older people and progress in developing COVID-19 vaccines, especially for efficient vaccination of the older population. There is also a summary of immunomodulatory and immunotherapeutic approaches to ameliorate the outcome of COVID-19 in older individuals.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/epidemiologia , COVID-19/prevenção & controle , Vacinação/tendências , Idoso , Idoso de 80 Anos ou mais , Ensaios Clínicos como Assunto/métodos , Humanos , Vacinação/métodos
10.
Hum Vaccin Immunother ; 16(12): 2913-2920, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-998188

RESUMO

Globally, researchers are undertaking significant efforts to design and develop effective vaccines, therapeutics, and antiviral drugs to curb the spread of coronavirus disease 2019 (COVID-19). Plants have been used for the production of vaccines, monoclonal antibodies, immunomodulatory proteins, drugs, and pharmaceuticals via molecular farming/transient expression system and are considered as bioreactors or factories for their bulk production. These biological products are stable, safe, effective, easily available, and affordable. Plant molecular farming could facilitate rapid production of biologics on an industrial scale, and has the potential to fulfill emergency demands, such as in the present situation of the COVID-19 pandemic. This article aims to describe the methodology and basics of plant biopharming, in addition to its prospective applications for developing effective vaccines and antibodies to counter COVID-19.


Assuntos
Anticorpos Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Compostos Fitoquímicos/uso terapêutico , SARS-CoV-2 , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Antivirais/imunologia , Antivirais/imunologia , Antivirais/uso terapêutico , Produtos Biológicos/imunologia , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Compostos Fitoquímicos/imunologia , Plantas , SARS-CoV-2/imunologia , Vacinas Virais/imunologia , Vacinas Virais/uso terapêutico
11.
Vet Q ; 41(1): 50-60, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: covidwho-990252

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic has now affected over 72.5 million people worldwide, with nearly 1.6 million deaths reported globally as of December 17, 2020. SARS-CoV-2 has been implicated to have originated from bats and pangolins, and its intermediate animal hosts are being investigated. Crossing of the species barrier and exhibition of zoonosis have been reported in SARS-CoV-2 in farm (minks), domesticated (cats and dogs), and wild animals (tigers, puma, and lions). Recently, the rapid spread of SARS-CoV-2 infection was reported in mink farms, which led to the death of a myriad minks. The clinical and pathological findings of SARS-CoV-2 infection and the rapid animal-to-animal transmission in minks are almost similar to the findings observed in patients with COVID-19. Additionally, the rapid virus transmission among minks and the associated mutations resulted in a new mink-associated variant that was identified in both minks and humans, thereby providing evidence of mink-to-human transmission of SARS-CoV-2. The new mink-associated SARS-CoV-2 variant with a possible reduced sensitivity to neutralizing antibodies poses serious risks and is expected to have a direct effect on the diagnostic techniques, therapeutics, and vaccines that are currently under development. This article highlights the current evidence of SARS-CoV-2 infection in farmed minks, and provides an understanding of the pathogenesis of COVID-19 in minks and the associated zoonotic concerns of SARS-CoV-2 transmission from minks to humans with an emphasis on appropriate mitigation measures and on the necessity of adopting the One Health approach during the COVID-19 pandemic.


Assuntos
Doenças dos Animais/transmissão , Doenças dos Animais/virologia , COVID-19 , Vison/virologia , Zoonoses/transmissão , Zoonoses/virologia , Animais , Animais Selvagens/virologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/veterinária , COVID-19/virologia , Fazendas , Humanos , Saúde Única , Pandemias , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação
12.
Front Cell Infect Microbiol ; 10: 576875, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-937426

RESUMO

COVID-19, the human coronavirus disease caused by SARS-CoV-2, was reported for the first time in Wuhan, China in late 2019. COVID-19 has no preventive vaccine or proven standard pharmacological treatment, and consequently, the outbreak swiftly became a pandemic affecting more than 215 countries around the world. For the diagnosis of COVID-19, the only reliable diagnostics is a qPCR assay. Among other diagnostic tools, the CRISPR-Cas system is being investigated for rapid and specific diagnosis of COVID-19. The CRISPR-Cas-based methods diagnose the SARS-CoV-2 infections within an hour. Apart from its diagnostic ability, CRISPR-Cas system is also being assessed for antiviral therapy development; however, till date, no CRISPR-based therapy has been approved for human use. The Prophylactic Antiviral CRISPR in huMAN cells (PAC-MAN), which is Cas 13 based strategy, has been developed against coronavirus. Although this strategy has the potential to be developed as a therapeutic modality, it may face significant challenges for approval in human clinical trials. This review is focused on describing potential use and challenges of CRISPR-Cas based approaches for the development of rapid and accurate diagnostic technique and/or a possible therapeutic alternative for combating COVID-19. The assessment of potential risks associated with use of CRISPR will be important for future clinical advancements.


Assuntos
COVID-19/virologia , Sistemas CRISPR-Cas , SARS-CoV-2/genética , Animais , COVID-19/diagnóstico , COVID-19/terapia , Humanos , SARS-CoV-2/metabolismo
13.
Hum Vaccin Immunother ; 16(12): 2932-2937, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: covidwho-917626

RESUMO

The COVID-19 pandemic has imposed unprecedented health and socioeconomic challenges on public health, disrupting it on a global scale. Given that women and children are widely considered the most vulnerable in the times of emergency, whether in war or during a pandemic, the current pandemic has also severely disrupted access to reproductive and child health services. Despite this, data on the effect of the pandemic on pregnant women and newborns remain scarce, and gender-disaggregated indicators of mortality and morbidity are not available. In this context, we suggest the implementation of a gendered approach to ensure the specific needs of women and their newborns are considered during the development of COVID-19 vaccines. Taking into account gender-based biological differences, the inclusion of pregnant and lactating mothers in clinical trials for the development of COVID-19 vaccines is of vital importance.


Assuntos
Vacinas contra COVID-19/uso terapêutico , COVID-19/prevenção & controle , Desenvolvimento de Medicamentos/métodos , Complicações Infecciosas na Gravidez/prevenção & controle , Populações Vulneráveis , COVID-19/epidemiologia , Vacinas contra COVID-19/farmacologia , Criança , Desenvolvimento de Medicamentos/tendências , Feminino , Humanos , Lactação/efeitos dos fármacos , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Fatores Sexuais
14.
Front Public Health ; 8: 574198, 2020.
Artigo em Inglês | MEDLINE | ID: covidwho-858829

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic wreaked havoc worldwide, with more than 20 million confirmed cases and nearly 0. 75 million deaths as of 10th August 2020. Various factors determine the severity and symptoms of this infection. Older age and underlying diseases are the challenges being faced in controlling and treating COVID-19. In 2019, 703 million of the global population was older than 65 years of age. The estimated mortality due to COVID-19 in people older than 76 years of age is reportedly 18%. Frequent infections in older people, higher disease severity, and increased mortality are major challenges in the implementation of appropriate preventive measures and future strategies to protect against this disease in geriatric population. Poor health status, weak immune function, lowered organ function, increased probability of multiple underlying diseases, and poor attention to personal health can increase the susceptibility to various diseases in the geriatric population. Concerning inadequate immunity, the decrease expression of receptors and exaggerated pathophysiologic responses can be debilitating. However, future studies will reveal the hidden facets in these aspects in this COVID-19 catastrophe. In this article, we reviewed the main concerns of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the geriatric population, including the risk of acquiring severe COVID-19 resulting in mortality, variation in clinical manifestations, and other pandemic-related concerns. We also discussed the need for increasing attention toward the elderly, taking appropriate prevention and control measures, and considering geriatric-related adjustments in vaccine design and development.


Assuntos
COVID-19 , Pandemias , Idoso , Idoso de 80 Anos ou mais , Humanos , SARS-CoV-2
18.
Expert Opin Biol Ther ; 20(9): 1033-1046, 2020 09.
Artigo em Inglês | MEDLINE | ID: covidwho-692644

RESUMO

INTRODUCTION: Coronavirus disease 2019 (COVID-19) has spread to several countries globally. Currently, there is no specific drug or vaccine available for managing COVID-19. Antibody-based immunotherapeutic strategies using convalescent plasma, monoclonal antibodies (mAbs), neutralizing antibodies (NAbs), and intravenous immunoglobulins have therapeutic potential. AREAS COVERED: This review provides the current status of the development of various antibody-based immunotherapeutics such as convalescent plasma, mAbs, NAbs, and intravenous immunoglobulins against COVID-19. The review also highlights their advantages, disadvantages, and clinical utility for the treatment of COVID-19 patients. EXPERT OPINION: In a pandemic situation such as COVID-19, the development of new drugs should focus on and expedite the strategies where safety and efficacy are proven. Antibody-based immunotherapeutic approaches such as convalescent plasma, intravenous immunoglobulins, and mAbs have a proven record of safety and efficacy and are in use for decades. Some of them are already being used to manage COVID-19 patients and found to be useful. However, the mAbs with virus neutralization potential is the need of the hour during this COVID-19 pandemic to be more specific and virus targeted. The research and investment need to be accelerated to bring them into clinical use for prophylactic and therapeutic purposes against COVID-19.


Assuntos
Betacoronavirus , Imunoglobulinas Intravenosas/uso terapêutico , Imunoterapia/métodos , Anticorpos Neutralizantes/uso terapêutico , COVID-19 , Infecções por Coronavirus/sangue , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/terapia , Humanos , Imunização Passiva , Imunoglobulinas Intravenosas/imunologia , Imunoterapia/tendências , Pandemias/prevenção & controle , Pneumonia Viral/sangue , Pneumonia Viral/imunologia , Pneumonia Viral/terapia , SARS-CoV-2 , Soroterapia para COVID-19
19.
Journal of Pure and Applied Microbiology ; 14:789-798, 2020.
Artigo | WHO COVID | ID: covidwho-609056

RESUMO

Severe acute respiratory syndrome corona virus-2 (SARS-CoV-2), a novel coronavirus initially reported in Wuhan, China, is the causative agent of coronavirus disease (COVID-19) pandemic. Symptoms of the disease comprise of fever, tiredness, dry cough, aches and pains, nasal congestion, runny nose, sore throat, diarrhoea and pneumonia at the late stage. SARS-CoV-2 has severely crippled the healthcare system and has caused huge economic losses. Following the outbreak, the SARS-CoV-2 was recognized timely and its genome was sequenced, leading to the development of real-time polymerase chain reaction assays for its detection in clinical samples collected from suspected cases. The management of the pandemic is limited by a number of misconceptions and insufficient information about laboratory testing for SARS-CoV-2 to confirm the disease. This includes a lack of awareness about procedures for the collection, transport, testing, and handling of biological samples for COVID diagnosis. This article provides an overview of the current laboratory diagnostic methods with a purpose to provide information and guidance to laboratories, stakeholders, broader community and especially public health professionals involved in laboratory testing for SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA